k+3/4k-2*(12k^2+2k-4)

Simple and best practice solution for k+3/4k-2*(12k^2+2k-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for k+3/4k-2*(12k^2+2k-4) equation:


k in (-oo:+oo)

k-(2*(12*k^2+2*k-4))+(3/4)*k = 0

k-2*(12*k^2+2*k-4)+(3/4)*k = 0

k-2*(12*k^2+2*k-4)+(3*k)/4 = 0

(-2*4*(12*k^2+2*k-4))/4+(4*k)/4+(3*k)/4 = 0

4*k-2*4*(12*k^2+2*k-4)+3*k = 0

3*k-96*k^2-12*k+32 = 0

32-96*k^2-9*k = 0

32-96*k^2-9*k = 0

32-96*k^2-9*k = 0

DELTA = (-9)^2-(-96*4*32)

DELTA = 12369

DELTA > 0

k = (12369^(1/2)+9)/(-96*2) or k = (9-12369^(1/2))/(-96*2)

k = (12369^(1/2)+9)/(-192) or k = (9-12369^(1/2))/(-192)

(k-((12369^(1/2)+9)/(-192)))*(k-((9-12369^(1/2))/(-192))) = 0

((k-((12369^(1/2)+9)/(-192)))*(k-((9-12369^(1/2))/(-192))))/4 = 0

((k-((12369^(1/2)+9)/(-192)))*(k-((9-12369^(1/2))/(-192))))/4 = 0 // * 4

(k-((12369^(1/2)+9)/(-192)))*(k-((9-12369^(1/2))/(-192))) = 0

( k-((12369^(1/2)+9)/(-192)) )

k-((12369^(1/2)+9)/(-192)) = 0 // + (12369^(1/2)+9)/(-192)

k = (12369^(1/2)+9)/(-192)

( k-((9-12369^(1/2))/(-192)) )

k-((9-12369^(1/2))/(-192)) = 0 // + (9-12369^(1/2))/(-192)

k = (9-12369^(1/2))/(-192)

k in { (12369^(1/2)+9)/(-192), (9-12369^(1/2))/(-192) }

See similar equations:

| 12s^3+10s^2-12s= | | 75w^2+90wt+27t^2= | | X^4-4x^3+3x^2-4x-4= | | (5-4)(r+10)=1 | | (3p+1)+6(p-8)-(p+2)= | | -4x+x^2= | | 8-9x=-10 | | 5(-10-6x)=-410 | | 2y+7+6y+15+4y+4y= | | 45+(-58)= | | -(2j-3)=-2j+6 | | 4x+42=8x-6 | | X/2+9=15 | | 3x^2+2.5x-3=0 | | (8/x+1)-(6/x-6)=4 | | 4a=11 | | (8x-4/4)-(3x-9/2)=-9 | | 10x^3-x^2+5x+45=0 | | 12-(2x-5)(2x-5)=3x | | -13-q=-21 | | 8x-4/4+3x-9/2=-9 | | 84-7x=20x+21 | | 2(x+1)-3=2x-1 | | 3x/7(8-9)=8x+3 | | 2(x+1)-3=2x+1 | | 3/2*10 | | m-(4)=7 | | 3x+153=11x-7 | | 9x=x-4 | | 3/2*10+1 | | Y=8+1.5x | | -(4m^2-n+7)= |

Equations solver categories